Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.137
Filtrar
1.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607013

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo
2.
Acta Myol ; 43(1): 8-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586166

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by dystrophin gene deletions (75%), duplications (15-20%) and point mutations (5-10%), a small portion of which are nonsense mutations. Women carrying dystrophin gene mutations are commonly unaffected because the wild X allele may produce a sufficient amount of the dystrophin protein. However, approximately 8-10% of them may experience muscle symptoms and 50% of those over 40 years develop cardiomyopathy. The presence of symptoms defines the individual as an affected "symptomatic or manifesting carrier". Though there is no effective cure for DMD, therapies are available to slow the decline of muscle strength and delay the onset and progression of cardiac and respiratory impairment. These include ataluren for patients with nonsense mutations, and antisense oligonucleotides therapies, for patients with specific deletions. Symptomatic DMD female carriers are not included in these indications and little data documenting their management, often entrusted to the discretion of individual doctors, is present in the literature. In this article, we report the clinical and instrumental outcomes of four symptomatic DMD carriers, aged between 26 and 45 years, who were treated with ataluren for 21 to 73 months (average 47.3), and annually evaluated for muscle strength, respiratory and cardiological function. Two patients retain independent ambulation at ages 33 and 45, respectively. None of them developed respiratory involvement or cardiomyopathy. No clinical adverse effects or relevant abnormalities in routine laboratory values, were observed.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Oxidiazóis , Humanos , Feminino , Pré-Escolar , Distrofina/genética , Projetos Piloto , Códon sem Sentido , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
3.
PLoS Genet ; 20(3): e1011169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437244

RESUMO

The basement membrane (BM) is an essential structural element of tissues, and its diversification participates in organ morphogenesis. However, the traffic routes associated with BM formation and the mechanistic modulations explaining its diversification are still poorly understood. Drosophila melanogaster follicular epithelium relies on a BM composed of oriented BM fibrils and a more homogenous matrix. Here, we determined the specific molecular identity and cell exit sites of BM protein secretory routes. First, we found that Rab10 and Rab8 define two parallel routes for BM protein secretion. When both routes were abolished, BM production was fully blocked; however, genetic interactions revealed that these two routes competed. Rab10 promoted lateral and planar-polarized secretion, whereas Rab8 promoted basal secretion, leading to the formation of BM fibrils and homogenous BM, respectively. We also found that the dystrophin-associated protein complex (DAPC) and Rab10 were both present in a planar-polarized tubular compartment containing BM proteins. DAPC was essential for fibril formation and sufficient to reorient secretion towards the Rab10 route. Moreover, we identified a dual function for the exocyst complex in this context. First, the Exo70 subunit directly interacted with dystrophin to limit its planar polarization. Second, the exocyst complex was also required for the Rab8 route. Altogether, these results highlight important mechanistic aspects of BM protein secretion and illustrate how BM diversity can emerge from the spatial control of distinct traffic routes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Membrana Basal/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Distrofina , Citoplasma/metabolismo , Epitélio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
EMBO Mol Med ; 16(4): 927-944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438561

RESUMO

Cell therapy for muscular dystrophy has met with limited success, mainly due to the poor engraftment of donor cells, especially in fibrotic muscle at an advanced stage of the disease. We developed a cell-mediated exon skipping that exploits the multinucleated nature of myofibers to achieve cross-correction of resident, dystrophic nuclei by the U7 small nuclear RNA engineered to skip exon 51 of the dystrophin gene. We observed that co-culture of genetically corrected human DMD myogenic cells (but not of WT cells) with their dystrophic counterparts at a ratio of either 1:10 or 1:30 leads to dystrophin production at a level several folds higher than what predicted by simple dilution. This is due to diffusion of U7 snRNA to neighbouring dystrophic resident nuclei. When transplanted into NSG-mdx-Δ51mice carrying a mutation of exon 51, genetically corrected human myogenic cells produce dystrophin at much higher level than WT cells, well in the therapeutic range, and lead to force recovery even with an engraftment of only 3-5%. This level of dystrophin production is an important step towards clinical efficacy for cell therapy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Terapia Genética , Vetores Genéticos , Éxons , Modelos Animais de Doenças , Músculos
5.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448545

RESUMO

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Assuntos
Exossomos , Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofina/genética , Camundongos Endogâmicos mdx , Exossomos/metabolismo , Morfolinos/metabolismo , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/metabolismo , Oligonucleotídeos/uso terapêutico
6.
Prog Neurobiol ; 235: 102590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484964

RESUMO

Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Distrofina/genética , Medo , Distrofia Muscular de Duchenne/genética , Mutação , Vertebrados
7.
Int Heart J ; 65(2): 211-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556332

RESUMO

Duchenne muscular dystrophy (DMD) is an intractable X-linked myopathy caused by dystrophin gene mutations. Patients with DMD suffer from progressive muscle weakness, inevitable cardiomyopathy, increased heart rate (HR), and decreased blood pressure (BP). The aim of this study was to clarify the efficacy and tolerability of ivabradine treatment for DMD cardiomyopathy.A retrospective analysis was performed in 11 patients with DMD, who received ivabradine treatment for more than 1 year. Clinical results were analyzed before (baseline), 6 months after, and 12 months after the ivabradine administration.The initial ivabradine dose was 2.0 ± 1.2 mg/day and the final dose was 5.6 ± 4.0 mg/day. The baseline BP was 95/64 mmHg. A non-significant BP decrease to 90/57 mmHg was observed at 1 month but it recovered to 97/62 mmHg at 12 months after ivabradine administration. The baseline HR was 93 ± 6 bpm and it decreased to 74 ± 12 bpm at 6 months (P = 0.011), and to 77 ± 10 bpm at 12 months (P = 0.008). A linear correlation (y = 2.2x + 5.1) was also observed between the ivabradine dose (x mg/day) and HR decrease (y bpm). The baseline LVEF was 38 ± 12% and it significantly increased to 42 ± 9% at 6 months (P = 0.011) and to 41 ± 11% at 12 months (P = 0.038). Only 1 patient with the lowest BMI of 11.0 kg/m2 and BP of 79/58 mmHg discontinued ivabradine treatment at 6 months, while 1-year administration was well-tolerated in the other 10 patients.Ivabradine decreased HR and increased LVEF without lowering BP, suggesting it can be a treatment option for DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Humanos , Ivabradina/uso terapêutico , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Estudos Retrospectivos , Cardiomiopatias/complicações , Cardiomiopatias/tratamento farmacológico , Distrofina/genética
8.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540736

RESUMO

Duchenne muscular dystrophy is caused by loss of the dystrophin protein. This pathology is accompanied by mitochondrial dysfunction contributing to muscle fiber instability. It is known that mitochondria-targeted in vivo therapy mitigates pathology and improves the quality of life of model animals. In the present work, we applied mitochondrial transplantation therapy (MTT) to correct the pathology in dystrophin-deficient mdx mice. Intramuscular injections of allogeneic mitochondria obtained from healthy animals into the hind limbs of mdx mice alleviated skeletal muscle injury, reduced calcium deposits in muscles and serum creatine kinase levels, and improved the grip strength of the hind limbs and motor activity of recipient mdx mice. We noted normalization of the mitochondrial ultrastructure and sarcoplasmic reticulum/mitochondria interactions in mdx muscles. At the same time, we revealed a decrease in the efficiency of oxidative phosphorylation in the skeletal muscle mitochondria of recipient mdx mice accompanied by a reduction in lipid peroxidation products (MDA products) and reduced calcium overloading. We found no effect of MTT on the expression of mitochondrial signature genes (Drp1, Mfn2, Ppargc1a, Pink1, Parkin) and on the level of mtDNA. Our results show that systemic MTT mitigates the development of destructive processes in the quadriceps muscle of mdx mice.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Distrofina/genética , Cálcio/metabolismo , Qualidade de Vida , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo
9.
Orphanet J Rare Dis ; 19(1): 123, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486238

RESUMO

BACKGROUND: Pathogenic missense variants in the dystrophin (DMD) gene are rarely reported in dystrophinopathies. Most DMD missense variants are of uncertain significance and their pathogenicity interpretation remains complicated. We aimed to investigate whether DMD missense variants would cause aberrant splicing and re-interpret their pathogenicity based on mRNA and protein studies. METHODS: Nine unrelated patients who had an elevated serum creatine kinase level with or without muscle weakness were enrolled. They underwent a detailed clinical, imaging, and pathological assessment. Routine genetic testing and muscle-derived mRNA and protein studies of dystrophin and sarcoglycan genes were performed in them. RESULTS: Three of the 9 patients presented with a Duchenne muscular dystrophy (DMD) phenotype and the remaining 6 patients had a suspected diagnosis of Becker muscular dystrophy (BMD) or sarcoglycanopathy based on their clinical and pathological characteristics. Routine genetic testing detected only 9 predicted DMD missense variants in them, of which 6 were novel and interpreted as uncertain significance. Muscle-derived mRNA studies of sarcoglycan genes didn't reveal any aberrant transcripts in them. Dystrophin mRNA studies confirmed that 3 predicted DMD missense variants (c.2380G > C, c.4977C > G, and c.5444A > G) were in fact splicing and frameshift variants due to aberrant splicing. The 9 DMD variants were re-interpreted as pathogenic or likely pathogenic based on mRNA and protein studies. Therefore, 3 patients with DMD splicing variants and 6 patients with confirmed DMD missense variants were diagnosed with DMD and BMD, respectively. CONCLUSION: Our study highlights the importance of muscle biopsy and aberrant splicing for clinical and genetic interpretation of uncertain DMD missense variants.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Mutação de Sentido Incorreto/genética , RNA Mensageiro/genética , Sarcoglicanas/genética
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474032

RESUMO

Dystrophin (DMD) gene mutations are associated with skeletal muscle diseases such as Duchenne and Becker Muscular Dystrophy (BMD) and X-linked dilated cardiomyopathy (XL-DCM). To investigate the molecular basis of DCM in a 37-year-old woman. Clinical and genetic investigations were performed. Genetic testing was performed with whole exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all available members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using an in silico prediction of pathogenicity. The index case was a 37-year-old woman diagnosed with DCM at the age of 33. A germline heterozygous A>G transversion at nucleotide 10103 in the DMD gene, leading to an aspartic acid-glycine substitution at the amino acid 3368 of the DMD protein (c.10103A>G p.Asp3368Gly), was identified and confirmed by PCR-based Sanger sequencing of the exon 70. In silico prediction suggests that this variant could have a deleterious impact on protein structure and functionality (CADD = 30). The genetic analysis was extended to the first-degree relatives of the proband (mother, father, and sister) and because of the absence of the variant in both parents, the p.Asp3368Gly substitution was considered as occurring de novo. Then, the direct sequencing analysis of her 8-year-old son identified as hemizygous for the same variant. The young patient did not present any signs or symptoms attributable to DCM, but reported asthenia and presented with bilateral calf hypertrophy at clinical examination. Laboratory testing revealed increased levels of creatinine kinase (maximum value of 19,000 IU/L). We report an early presentation of dilated cardiomyopathy in a 33-year-old woman due to a de novo pathogenic variant of the dystrophin (DMD) gene (p.Asp3368Gly). Genetic identification of this variant allowed an early diagnosis of a skeletal muscle disease in her son.


Assuntos
Cardiomiopatia Dilatada , Distrofia Muscular de Duchenne , Humanos , Feminino , Adulto , Criança , Distrofina/genética , Cardiomiopatia Dilatada/genética , Distrofia Muscular de Duchenne/genética , Mães
11.
BMC Genomics ; 25(1): 292, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504154

RESUMO

BACKGROUND: Dystrophinopathies are the most common X-linked inherited muscle diseases, and the disease-causing gene is DMD. Exonic duplications are a common type of pathogenic variants in the DMD gene, however, 5' end exonic duplications containing exon 1 are less common. When assessing the pathogenicity of exonic duplications in the DMD gene, consideration must be given to their impact on the reading frame. Traditional molecular methods, such as multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS), are commonly used in clinics. However, they cannot discriminate the precise physical locations of breakpoints and structural features of genomic rearrangement. Long-read sequencing (LRS) can effectively overcome this limitation. RESULTS: We used LRS technology to perform whole genome sequencing on three families and analyze the structural variations of the DMD gene, which involves the duplications of exon 1 and/or exon 2. Two distinct variant types encompassing exon 1 in the DMD Dp427m isoform and/or Dp427c isoform are identified, which have been infrequently reported previously. In pedigree 1, the male individuals harboring duplication variant of consecutive exons 1-2 in the DMD canonical transcript (Dp427m) and exon 1 in the Dp427c transcript are normal, indicating the variant is likely benign. In pedigree 3, the patient carries complex SVs involving exon 1 of the DMD Dp427c transcript showing an obvious phenotype. The locations of the breakpoints and the characteristics of structural variants (SVs) are identified by LRS, enabling the classification of the variants' pathogenicity. CONCLUSIONS: Our research sheds light on the complexity of DMD variants encompassing Dp427c/Dp427m promoter regions and emphasizes the importance of cautious interpretation when assessing the pathogenicity of DMD 5' end exonic duplications, particularly in carrier screening scenarios without an affected proband.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Masculino , Distrofina/genética , Éxons , Genômica , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Isoformas de Proteínas/genética
12.
Stem Cell Res ; 76: 103343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428348

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disorder, which is caused mostly by frame-disrupting, out-of-frame variation in the dystrophin (DMD) gene. Loss-of- function mutations are the most common type of mutation in DMD, accounting for approximately 60-90% of all DMD variations. In this study, we used adenine base editing to generate a human embryonic stem cell line with splice-site mutations to mimic exon deletion variants in clinical Duchenne muscular dystrophy patients. This cell line has differentiation potential and a normal karyotypic.


Assuntos
Células-Tronco Embrionárias Humanas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Embrionárias Humanas/metabolismo , Éxons/genética , Linhagem Celular , Mutação/genética
13.
J Int Med Res ; 52(3): 3000605241233521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436252

RESUMO

OBJECTIVE: Extraocular muscles have complex development processes. The present study aimed to analyze the presence of myosin, dystrophin, and collagen IV in the strabismus-affected extraocular muscle. METHODS: This research was an observational case-control study. Myosin, dystrophin, and collagen IV were detected by histological and immunohistochemical analyses of extraocular muscle samples from concomitant strabismus patients and controls. A semi-quantitative grading method and statistical analysis were used. RESULTS: In the strabismus-affected extraocular muscle, morphological analysis demonstrated different-sized muscle fibers. Immature muscle fibers and an increased amount of connective tissue were also noted. Strong positive correlations were identified between myosin and collagen IV and between dystrophin and collagen IV. CONCLUSIONS: The presence of newly formed muscle fibers, increased connective tissue, and variable diameters of skeletal striated muscle fibers indicate the decreased quality of extraocular muscles in strabismus cases. Reduced levels of myosin and dystrophin and a near absence of collagen IV in strabismus-affected skeletal striated muscle fibers characterized the muscular dystrophy of strabismus. Adjuvant therapy aimed at normalizing the metabolism of these muscles may be appropriate alongside concomitant strabismus treatment.


Assuntos
Músculos Oculomotores , Estrabismo , Humanos , Estudos de Casos e Controles , Colágeno/metabolismo , Distrofina/metabolismo , Miosinas/metabolismo
14.
Cell Mol Life Sci ; 81(1): 150, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512499

RESUMO

Deposition of the exon junction complex (EJC) upstream of exon-exon junctions helps maintain transcriptome integrity by preventing spurious re-splicing events in already spliced mRNAs. Here we investigate the importance of EJC for the correct splicing of the 2.2-megabase-long human DMD pre-mRNA, which encodes dystrophin, an essential protein involved in cytoskeletal organization and cell signaling. Using targeted RNA-seq, we show that knock-down of the eIF4A3 and Y14 core components of EJC in a human muscle cell line causes an accumulation of mis-splicing events clustered towards the 3' end of the DMD transcript (Dp427m). This deregulation is conserved in the short Dp71 isoform expressed ubiquitously except in adult skeletal muscle and is rescued with wild-type eIF4A3 and Y14 proteins but not with an EJC assembly-defective mutant eIF4A3. MLN51 protein and EJC-associated ASAP/PSAP complexes independently modulate the inclusion of the regulated exons 71 and 78. Our data confirm the protective role of EJC in maintaining splicing fidelity, which in the DMD gene is necessary to preserve the function of the critical C-terminal protein-protein interaction domain of dystrophin present in all tissue-specific isoforms. Given the role of the EJC in maintaining the integrity of dystrophin, we asked whether the EJC could also be involved in the regulation of a mechanism as complex as skeletal muscle differentiation. We found that eIF4A3 knockdown impairs myogenic differentiation by blocking myotube formation. Collectively, our data provide new insights into the functional roles of EJC in human skeletal muscle.


Assuntos
Distrofina , Splicing de RNA , Humanos , Núcleo Celular/metabolismo , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismo
15.
Nat Commun ; 15(1): 1950, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431640

RESUMO

In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.


Assuntos
Proteínas com Domínio LIM , Proteínas Musculares , Distrofia Muscular de Duchenne , Músculos Oculomotores , Animais , Proteínas do Citoesqueleto/metabolismo , Distrofina/genética , Expressão Ectópica do Gene , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Músculos Oculomotores/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Musculares/metabolismo , Proteínas com Domínio LIM/metabolismo
16.
Ann N Y Acad Sci ; 1534(1): 130-144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517756

RESUMO

Myogenesis is essential for skeletal muscle formation, growth, and regeneration and can be altered in Duchenne muscular dystrophy (DMD), an X-linked disorder due to the absence of the cytoskeletal protein dystrophin. Ion channels play a pivotal role in muscle differentiation and interact with the dystrophin complex. To investigate ion channel involvement in myogenesis in dystrophic settings, we performed electrophysiological characterization of two immortalized mouse cell lines, wild-type (WT) H2K-2B4 and the dystrophic (DYS) H2K-SF1, and measured gene expression of differentiation markers and ion channels. Inward and outward currents/density increased as differentiation progressed in both WT and DYS cells. However, day-11 DYS cells showed higher (27%) inward current density with an increased expression ratio of Scn5a/Scn4a and decreased (48%) barium-sensitive outward current compared to WT. Furthermore, day-11 DYS cells showed more positive resting membrane potential (+10 mV) and lower membrane capacitance (50%) compared to WT. DYS cells also had reduced Myog and Myf5 expression at days 6 and 11. Overall, ion channel profile and myogenesis appeared altered in DYS cells. These results are a first step in validating ion channels as potential drug targets to ameliorate muscle degeneration in DMD settings and as differentiation biomarkers in innovative platforms.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofia Muscular de Duchenne/metabolismo , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo , Canais Iônicos/metabolismo , Desenvolvimento Muscular
17.
Int J Biol Macromol ; 264(Pt 1): 130544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428778

RESUMO

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by progressive and severe muscle weakening and degeneration. Among the various forms of muscular dystrophy, it stands out as one of the most common and impactful, predominantly affecting boys. The condition arises due to mutations in the dystrophin gene, a key player in maintaining the structure and function of muscle fibers. The manuscript explores the structural features of dystrophin protein and their pivotal roles in DMD. We present an in-depth analysis of promising therapeutic approaches targeting dystrophin and their implications for the therapeutic management of DMD. Several therapies aiming to restore dystrophin protein or address secondary pathology have obtained regulatory approval, and many others are ongoing clinical development. Notably, recent advancements in genetic approaches have demonstrated the potential to restore partially functional dystrophin forms. The review also provides a comprehensive overview of the status of clinical trials for major therapeutic genetic approaches for DMD. In addition, we have summarized the ongoing therapeutic approaches and advanced mechanisms of action for dystrophin restoration and the challenges associated with DMD therapeutics.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , Distrofina/metabolismo , Distrofina/uso terapêutico , Fibras Musculares Esqueléticas/metabolismo
18.
Nucleic Acids Res ; 52(5): 2740-2757, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321963

RESUMO

Prime editors have high potential for disease modelling and regenerative medicine efforts including those directed at the muscle-wasting disorder Duchenne muscular dystrophy (DMD). However, the large size and multicomponent nature of prime editing systems pose substantial production and delivery issues. Here, we report that packaging optimized full-length prime editing constructs in adenovector particles (AdVPs) permits installing precise DMD edits in human myogenic cells, namely, myoblasts and mesenchymal stem cells (up to 80% and 64%, respectively). AdVP transductions identified optimized prime-editing reagents capable of correcting DMD reading frames of ∼14% of patient genotypes and restoring dystrophin synthesis and dystrophin-ß-dystroglycan linkages in unselected DMD muscle cell populations. AdVPs were equally suitable for correcting DMD iPSC-derived cardiomyocytes and delivering dual prime editors tailored for DMD repair through targeted exon 51 deletion. Moreover, by exploiting the cell cycle-independent AdVP transduction process, we report that 2- and 3-component prime-editing modalities are both most active in cycling than in post-mitotic cells. Finally, we establish that combining AdVP transduction with seamless prime editing allows for stacking chromosomal edits through successive delivery rounds. In conclusion, AdVPs permit versatile investigation of advanced prime editing systems independently of their size and component numbers, which should facilitate their screening and application.


Assuntos
Distrofina , Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Sistemas CRISPR-Cas/genética , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Mioblastos/metabolismo , Miócitos Cardíacos/metabolismo
19.
Zhonghua Yi Xue Za Zhi ; 104(11): 822-833, 2024 Mar 19.
Artigo em Chinês | MEDLINE | ID: mdl-38378296

RESUMO

Dystrophinopathy refers to a group of X-linked recessive myopathies that primarily affect skeletal and/or cardiac muscle caused by pathogenic variants in the dystrophin-encoding DMD gene, including Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy. The broad and complex spectrum of pathogenic DMD variants complicates the diagnosis and clinical classification in some patients. The precise genetic diagnosis is of great significance for the clinical diagnosis and treatment, multidisciplinary management, genetic counseling, prenatal diagnosis, and selection of gene therapy in dystrophinopathy. The present guideline is primarily based on the research advances in dystrophinopathy. Meanwhile, the foreign and domestic clinical guidelines or consensus for dystrophinopathy were referenced to put forward 18 recommendations and reach a consensus on the clinical manifestations, genetic basis, clinical diagnosis and classification, genetic diagnosis, and clinical genetic counseling of dystrophinopathy. This guideline aims to standardize and optimize the diagnostic process and reduce the diagnostic difficulty of patients with dystrophinopathy. In addition, this guideline provides some practical reference for clinicians and government staff.


Assuntos
Cardiomiopatia Dilatada , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação
20.
J Neuromuscul Dis ; 11(2): 285-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363615

RESUMO

Background: Dilated cardiomyopathy (DCM) is a major complication of, and leading cause of mortality in Duchenne muscular dystrophy (DMD). Its severity, age at onset, and rate of progression display wide variability, whose molecular bases have been scarcely elucidated. Potential DCM-modifying factors include glucocorticoid (GC) and cardiological treatments, DMD mutation type and location, and variants in other genes. Methods and Results: We retrospectively collected 3138 echocardiographic measurements of left ventricular ejection fraction (EF), shortening fraction (SF), and end-diastolic volume (EDV) from 819 DMD participants, 541 from an Italian multicentric cohort and 278 from the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS). Using generalized estimating equation (GEE) models, we estimated the yearly rate of decrease of EF (-0.80%) and SF (-0.41%), while EDV increase was not significantly associated with age. Utilizing a multivariate generalized estimating equation (GEE) model we observed that mutations preserving the expression of the C-terminal Dp71 isoform of dystrophin were correlated with decreased EDV (-11.01 mL/m2, p = 0.03) while for dp116 were correlated with decreased EF (-4.14%, p = <0.001). The rs10880 genotype in the LTBP4 gene, previously shown to prolong ambulation, was also associated with increased EF and decreased EDV (+3.29%, p = 0.002, and -10.62 mL/m2, p = 0.008) with a recessive model. Conclusions: We quantitatively describe the progression of systolic dysfunction progression in DMD, confirm the effect of distal dystrophin isoform expression on the dystrophin-deficient heart, and identify a strong effect of LTBP4 genotype of DCM in DMD.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Haplótipos , Estudos Retrospectivos , Volume Sistólico , Função Ventricular Esquerda , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicações , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Isoformas de Proteínas/genética , Proteínas de Ligação a TGF-beta Latente/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...